What is O(log(n!)), O(n!), and Stirling’s approximation?

O(n!) isn’t equivalent to O(n^n). It is asymptotically less than O(n^n).

O(log(n!)) is equal to O(n log(n)). Here is one way to prove that:

Note that by using the log rule log(mn) = log(m) + log(n) we can see that:

log(n!) = log(n*(n-1)*...2*1) = log(n) + log(n-1) + ... log(2) + log(1)

Proof that O(log(n!)) ⊆ O(n log(n)):

log(n!) = log(n) + log(n-1) + ... log(2) + log(1)

Which is less than:

log(n) + log(n) + log(n) + log(n) + ... + log(n) = n*log(n)

So O(log(n!)) is a subset of O(n log(n))

Proof that O(n log(n)) ⊆ O(log(n!)):

log(n!) = log(n) + log(n-1) + ... log(2) + log(1)

Which is greater than (the left half of that expression with all (n-x) replaced by n/2:

log(n/2) + log(n/2) + ... + log(n/2) = floor(n/2)*log(floor(n/2)) ∈ O(n log(n))

So O(n log(n)) is a subset of O(log(n!)).

Since O(n log(n)) ⊆ O(log(n!)) ⊆ O(n log(n)), they are equivalent big-Oh classes.

Leave a Comment