Compare double to zero using epsilon

Assuming 64-bit IEEE double, there is a 52-bit mantissa and 11-bit exponent. Let’s break it to bits:

1.0000 00000000 00000000 00000000 00000000 00000000 00000000 × 2^0 = 1

The smallest representable number greater than 1:

1.0000 00000000 00000000 00000000 00000000 00000000 00000001 × 2^0 = 1 + 2^-52

Therefore:

epsilon = (1 + 2^-52) - 1 = 2^-52

Are there any numbers between 0 and epsilon? Plenty… E.g. the minimal positive representable (normal) number is:

1.0000 00000000 00000000 00000000 00000000 00000000 00000000 × 2^-1022 = 2^-1022

In fact there are (1022 - 52 + 1)×2^52 = 4372995238176751616 numbers between 0 and epsilon, which is 47% of all the positive representable numbers…

Leave a Comment