Form a big 2d array from multiple smaller 2d arrays

import numpy as np
def blockshaped(arr, nrows, ncols):
    """
    Return an array of shape (n, nrows, ncols) where
    n * nrows * ncols = arr.size

    If arr is a 2D array, the returned array looks like n subblocks with
    each subblock preserving the "physical" layout of arr.
    """
    h, w = arr.shape
    return (arr.reshape(h//nrows, nrows, -1, ncols)
               .swapaxes(1,2)
               .reshape(-1, nrows, ncols))


def unblockshaped(arr, h, w):
    """
    Return an array of shape (h, w) where
    h * w = arr.size

    If arr is of shape (n, nrows, ncols), n sublocks of shape (nrows, ncols),
    then the returned array preserves the "physical" layout of the sublocks.
    """
    n, nrows, ncols = arr.shape
    return (arr.reshape(h//nrows, -1, nrows, ncols)
               .swapaxes(1,2)
               .reshape(h, w))

For example,

c = np.arange(24).reshape((4,6))
print(c)
# [[ 0  1  2  3  4  5]
#  [ 6  7  8  9 10 11]
#  [12 13 14 15 16 17]
#  [18 19 20 21 22 23]]

print(blockshaped(c, 2, 3))
# [[[ 0  1  2]
#   [ 6  7  8]]

#  [[ 3  4  5]
#   [ 9 10 11]]

#  [[12 13 14]
#   [18 19 20]]

#  [[15 16 17]
#   [21 22 23]]]

print(unblockshaped(blockshaped(c, 2, 3), 4, 6))
# [[ 0  1  2  3  4  5]
#  [ 6  7  8  9 10 11]
#  [12 13 14 15 16 17]
#  [18 19 20 21 22 23]]

Note that there is also superbatfish’s
blockwise_view
. It arranges the
blocks in a different format (using more axes) but it has the advantage of (1)
always returning a view and (2) being capable of handing arrays of any
dimension.

Leave a Comment