uses for state machines [closed]

In what areas of programming would I use a state machine?

Use a state machine to represent a (real or logical) object that can exist in a limited number of conditions (“states“) and progresses from one state to the next according to a fixed set of rules.

Why would I use a state machine?

A state machine is often a very compact way to represent a set of complex rules and conditions, and to process various inputs. You’ll see state machines in embedded devices that have limited memory. Implemented well, a state machine is self-documenting because each logical state represents a physical condition. A state machine can be embodied in a tiny amount of code in comparison to its procedural equivalent and runs extremely efficiently. Moreover, the rules that govern state changes can often be stored as data in a table, providing a compact representation that can be easily maintained.

How can I implement one?

Trivial example:

enum states {      // Define the states in the state machine.
  NO_PIZZA,        // Exit state machine.
  COUNT_PEOPLE,    // Ask user for # of people.
  COUNT_SLICES,    // Ask user for # slices.
  SERVE_PIZZA,     // Validate and serve.
  EAT_PIZZA        // Task is complete.
} STATE;

STATE state = COUNT_PEOPLE;
int nPeople, nSlices, nSlicesPerPerson;

// Serve slices of pizza to people, so that each person gets
/// the same number of slices.   
while (state != NO_PIZZA)  {
   switch (state)  {
   case COUNT_PEOPLE:  
       if (promptForPeople(&nPeople))  // If input is valid..
           state = COUNT_SLICES;       // .. go to next state..
       break;                          // .. else remain in this state.
   case COUNT_SLICES:  
       if (promptForSlices(&nSlices))
          state = SERVE_PIZZA;
        break;
   case SERVE_PIZZA:
       if (nSlices % nPeople != 0)    // Can't divide the pizza evenly.
       {                             
           getMorePizzaOrFriends();   // Do something about it.
           state = COUNT_PEOPLE;      // Start over.
       }
       else
       {
           nSlicesPerPerson = nSlices/nPeople;
           state = EAT_PIZZA;
       }
       break;
   case EAT_PIZZA:
       // etc...
       state = NO_PIZZA;  // Exit the state machine.
       break;
   } // switch
} // while

Notes:

  • The example uses a switch() with explicit case/break states for simplicity. In practice, a case will often “fall through” to the next state.

  • For ease of maintaining a large state machine, the work done in each case can be encapsulated in a “worker” function. Get any input at the top of the while(), pass it to the worker function, and check the return value of the worker to compute the next state.

  • For compactness, the entire switch() can be replaced with an array of function pointers. Each state is embodied by a function whose return value is a pointer to the next state. Warning: This can either simplify the state machine or render it totally unmaintainable, so consider the implementation carefully!

  • An embedded device may be implemented as a state machine that exits only on a catastrophic error, after which it performs a hard reset and re-enters the state machine.

Leave a Comment