Using ANTLR 3.3?

Let’s say you want to parse simple expressions consisting of the following tokens:

  • - subtraction (also unary);
  • + addition;
  • * multiplication;
  • / division;
  • (...) grouping (sub) expressions;
  • integer and decimal numbers.

An ANTLR grammar could look like this:

grammar Expression;

options {
  language=CSharp2;
}

parse
  :  exp EOF 
  ;

exp
  :  addExp
  ;

addExp
  :  mulExp (('+' | '-') mulExp)*
  ;

mulExp
  :  unaryExp (('*' | "https://stackoverflow.com/") unaryExp)*
  ;

unaryExp
  :  '-' atom 
  |  atom
  ;

atom
  :  Number
  |  '(' exp ')' 
  ;

Number
  :  ('0'..'9')+ ('.' ('0'..'9')+)?
  ;

Now to create a proper AST, you add output=AST; in your options { ... } section, and you mix some “tree operators” in your grammar defining which tokens should be the root of a tree. There are two ways to do this:

  1. add ^ and ! after your tokens. The ^ causes the token to become a root and the ! excludes the token from the ast;
  2. by using “rewrite rules”: ... -> ^(Root Child Child ...).

Take the rule foo for example:

foo
  :  TokenA TokenB TokenC TokenD
  ;

and let’s say you want TokenB to become the root and TokenA and TokenC to become its children, and you want to exclude TokenD from the tree. Here’s how to do that using option 1:

foo
  :  TokenA TokenB^ TokenC TokenD!
  ;

and here’s how to do that using option 2:

foo
  :  TokenA TokenB TokenC TokenD -> ^(TokenB TokenA TokenC)
  ;

So, here’s the grammar with the tree operators in it:

grammar Expression;

options {
  language=CSharp2;
  output=AST;
}

tokens {
  ROOT;
  UNARY_MIN;
}

@parser::namespace { Demo.Antlr }
@lexer::namespace { Demo.Antlr }

parse
  :  exp EOF -> ^(ROOT exp)
  ;

exp
  :  addExp
  ;

addExp
  :  mulExp (('+' | '-')^ mulExp)*
  ;

mulExp
  :  unaryExp (('*' | "https://stackoverflow.com/")^ unaryExp)*
  ;

unaryExp
  :  '-' atom -> ^(UNARY_MIN atom)
  |  atom
  ;

atom
  :  Number
  |  '(' exp ')' -> exp
  ;

Number
  :  ('0'..'9')+ ('.' ('0'..'9')+)?
  ;

Space 
  :  (' ' | '\t' | '\r' | '\n'){Skip();}
  ;

I also added a Space rule to ignore any white spaces in the source file and added some extra tokens and namespaces for the lexer and parser. Note that the order is important (options { ... } first, then tokens { ... } and finally the @... {}-namespace declarations).

That’s it.

Now generate a lexer and parser from your grammar file:

java -cp antlr-3.2.jar org.antlr.Tool Expression.g

and put the .cs files in your project together with the C# runtime DLL’s.

You can test it using the following class:

using System;
using Antlr.Runtime;
using Antlr.Runtime.Tree;
using Antlr.StringTemplate;

namespace Demo.Antlr
{
  class MainClass
  {
    public static void Preorder(ITree Tree, int Depth) 
    {
      if(Tree == null)
      {
        return;
      }

      for (int i = 0; i < Depth; i++)
      {
        Console.Write("  ");
      }

      Console.WriteLine(Tree);

      Preorder(Tree.GetChild(0), Depth + 1);
      Preorder(Tree.GetChild(1), Depth + 1);
    }

    public static void Main (string[] args)
    {
      ANTLRStringStream Input = new ANTLRStringStream("(12.5 + 56 / -7) * 0.5"); 
      ExpressionLexer Lexer = new ExpressionLexer(Input);
      CommonTokenStream Tokens = new CommonTokenStream(Lexer);
      ExpressionParser Parser = new ExpressionParser(Tokens);
      ExpressionParser.parse_return ParseReturn = Parser.parse();
      CommonTree Tree = (CommonTree)ParseReturn.Tree;
      Preorder(Tree, 0);
    }
  }
}

which produces the following output:

ROOT
  *
    +
      12.5
      /
        56
        UNARY_MIN
          7
    0.5

which corresponds to the following AST:

alt text

(diagram created using graph.gafol.net)

Note that ANTLR 3.3 has just been released and the CSharp target is “in beta”. That’s why I used ANTLR 3.2 in my example.

In case of rather simple languages (like my example above), you could also evaluate the result on the fly without creating an AST. You can do that by embedding plain C# code inside your grammar file, and letting your parser rules return a specific value.

Here’s an example:

grammar Expression;

options {
  language=CSharp2;
}

@parser::namespace { Demo.Antlr }
@lexer::namespace { Demo.Antlr }

parse returns [double value]
  :  exp EOF {$value = $exp.value;}
  ;

exp returns [double value]
  :  addExp {$value = $addExp.value;}
  ;

addExp returns [double value]
  :  a=mulExp       {$value = $a.value;}
     ( '+' b=mulExp {$value += $b.value;}
     | '-' b=mulExp {$value -= $b.value;}
     )*
  ;

mulExp returns [double value]
  :  a=unaryExp       {$value = $a.value;}
     ( '*' b=unaryExp {$value *= $b.value;}
     | "https://stackoverflow.com/" b=unaryExp {$value /= $b.value;}
     )*
  ;

unaryExp returns [double value]
  :  '-' atom {$value = -1.0 * $atom.value;}
  |  atom     {$value = $atom.value;}
  ;

atom returns [double value]
  :  Number      {$value = Double.Parse($Number.Text, CultureInfo.InvariantCulture);}
  |  '(' exp ')' {$value = $exp.value;}
  ;

Number
  :  ('0'..'9')+ ('.' ('0'..'9')+)?
  ;

Space 
  :  (' ' | '\t' | '\r' | '\n'){Skip();}
  ;

which can be tested with the class:

using System;
using Antlr.Runtime;
using Antlr.Runtime.Tree;
using Antlr.StringTemplate;

namespace Demo.Antlr
{
  class MainClass
  {
    public static void Main (string[] args)
    {
      string expression = "(12.5 + 56 / -7) * 0.5";
      ANTLRStringStream Input = new ANTLRStringStream(expression);  
      ExpressionLexer Lexer = new ExpressionLexer(Input);
      CommonTokenStream Tokens = new CommonTokenStream(Lexer);
      ExpressionParser Parser = new ExpressionParser(Tokens);
      Console.WriteLine(expression + " = " + Parser.parse());
    }
  }
}

and produces the following output:

(12.5 + 56 / -7) * 0.5 = 2.25

EDIT

In the comments, Ralph wrote:

Tip for those using Visual Studio: you can put something like java -cp "$(ProjectDir)antlr-3.2.jar" org.antlr.Tool "$(ProjectDir)Expression.g" in the pre-build events, then you can just modify your grammar and run the project without having to worry about rebuilding the lexer/parser.

Leave a Comment