What range of numbers can be represented in a 16-, 32- and 64-bit IEEE-754 systems?

For a given IEEE-754 floating point number X, if

2^E <= abs(X) < 2^(E+1)

then the distance from X to the next largest representable floating point number (epsilon) is:

epsilon = 2^(E-52)    % For a 64-bit float (double precision)
epsilon = 2^(E-23)    % For a 32-bit float (single precision)
epsilon = 2^(E-10)    % For a 16-bit float (half precision)

The above equations allow us to compute the following:

  • For half precision

    If you want an accuracy of +/-0.5 (or 2^-1), the maximum size that the number can be is 2^10. Any larger than this and the distance between floating point numbers is greater than 0.5.

    If you want an accuracy of +/-0.0005 (about 2^-11), the maximum size that the number can be is 1. Any larger than this and the distance between floating point numbers is greater than 0.0005.

  • For single precision

    If you want an accuracy of +/-0.5 (or 2^-1), the maximum size that the number can be is 2^23. Any larger than this and the distance between floating point numbers is greater than 0.5.

    If you want an accuracy of +/-0.0005 (about 2^-11), the maximum size that the number can be is 2^13. Any larger than this and the distance between floating point numbers is greater than 0.0005.

  • For double precision

    If you want an accuracy of +/-0.5 (or 2^-1), the maximum size that the number can be is 2^52. Any larger than this and the distance between floating point numbers is greater than 0.5.

    If you want an accuracy of +/-0.0005 (about 2^-11), the maximum size that the number can be is 2^42. Any larger than this and the distance between floating point numbers is greater than 0.0005.

Leave a Comment