character reconstruction and filling for OCR

I have played a bit with your input

Normalization of lighting + dynamic range normalization helps a bit to obtain much better results but still far away from needed one. I would like to try sharpening of partial derivations to boost the letters from background and treshold out small bumps before integrate back and recolor to mask image when I will have the time (not sure when maybe tomorow) I will edit this (and comment/notify you)

normalized lighting

compute average corners intensity and bilinear-ly rescale the intensities to match average color

normalized lighting

if you need something more sophisticated see:

edge detection

partial derivation of intensity i by x and y

  • i=|i(x,y)/dx|+|i(x,y)/dy|

and then tresholded by treshold=13

edge detect

[notes]

To eliminate most noise I applied smooth filtering before edge detection

[edit1] after some analysis I found your image has poor edges for sharpening integration

Here example of intensity graph after first derivation by x in the middle line of image

poor edges

As you can see the black areas are fine but the white-ish ones are almost non recognizable from background noise. So your only hope is to use the min max filtering as @Daniel answer suggested and take more weight on black edge regions (white are not reliable)

min max

min max filter emphasize the black (blue mask) and white (red mask) regions. If booth areas would be reliable then you just fill the space between them but that is not an option in your case instead I would enlarge the areas (weighted more on blue mask) and OCR the result with OCR customized for such 3 color input.

you could also take 2 images with different light position and fixed camera and combine them to cover the recognizable black area from all sides

[edit2] C++ source code for the last method

//---------------------------------------------------------------------------
typedef union { int dd; short int dw[2]; byte db[4]; } color;
picture pic0,pic1,pic2; // pic0 source image,pic1 normalized+min/max,pic2 enlarge filter
//---------------------------------------------------------------------------
void filter()
    {
    int sz=16;          // [pixels] square size for corner avg color computation (c00..c11)
    int fs0=5;          // blue [pixels] font thickness
    int fs1=2;          // red  [pixels] font thickness
    int tr0=320;        // blue min treshold
    int tr1=125;        // red  max treshold

    int x,y,c,cavg,cmin,cmax;
    pic1=pic0;          // copy source image
    pic1.rgb2i();       // convert to grayscale intensity

    for (x=0;x<5;x++) pic1.ui_smooth();
    cavg=pic1.ui_normalize();

    // min max filter
    cmin=pic1.p[0][0].dd; cmax=cmin;
    for (y=0;y<pic1.ys;y++)
     for (x=0;x<pic1.xs;x++)
        {
        c=pic1.p[y][x].dd;
        if (cmin>c) cmin=c;
        if (cmax<c) cmax=c;
        }
    // treshold min/max
    for (y=0;y<pic1.ys;y++)
     for (x=0;x<pic1.xs;x++)
        {
        c=pic1.p[y][x].dd;
             if (cmax-c<tr1) c=0x00FF0000; // red
        else if (c-cmin<tr0) c=0x000000FF; // blue
        else                 c=0x00000000; // black
        pic1.p[y][x].dd=c;
        }
    pic1.rgb_smooth();  // remove single dots

    // recolor image
    pic2=pic1; pic2.clear(0);
    pic2.bmp->Canvas->Pen  ->Color=clWhite;
    pic2.bmp->Canvas->Brush->Color=clWhite;
    for (y=0;y<pic1.ys;y++)
     for (x=0;x<pic1.xs;x++)
        {
        c=pic1.p[y][x].dd;
        if (c==0x00FF0000)
            {
            pic2.bmp->Canvas->Pen  ->Color=clRed;
            pic2.bmp->Canvas->Brush->Color=clRed;
            pic2.bmp->Canvas->Ellipse(x-fs1,y-fs1,x+fs1,y+fs1); // red
            }
        if (c==0x000000FF)
            {
            pic2.bmp->Canvas->Pen  ->Color=clBlue;
            pic2.bmp->Canvas->Brush->Color=clBlue;
            pic2.bmp->Canvas->Ellipse(x-fs0,y-fs0,x+fs0,y+fs0); // blue
            }
        }
    }
//---------------------------------------------------------------------------
int  picture::ui_normalize(int sz=32)
    {
    if (xs<sz) return 0;
    if (ys<sz) return 0;
    int x,y,c,c0,c1,c00,c01,c10,c11,cavg;

    // compute average intensity in corners
    for (c00=0,y=         0;y<     sz;y++) for (x=         0;x<     sz;x++) c00+=p[y][x].dd; c00/=sz*sz;
    for (c01=0,y=         0;y<     sz;y++) for (x=xs-sz;x<xs;x++) c01+=p[y][x].dd; c01/=sz*sz;
    for (c10=0,y=ys-sz;y<ys;y++) for (x=         0;x<     sz;x++) c10+=p[y][x].dd; c10/=sz*sz;
    for (c11=0,y=ys-sz;y<ys;y++) for (x=xs-sz;x<xs;x++) c11+=p[y][x].dd; c11/=sz*sz;
    cavg=(c00+c01+c10+c11)/4;

    // normalize lighting conditions
    for (y=0;y<ys;y++)
     for (x=0;x<xs;x++)
        {
        // avg color = bilinear interpolation of corners colors
        c0=c00+(((c01-c00)*x)/xs);
        c1=c10+(((c11-c10)*x)/xs);
        c =c0 +(((c1 -c0 )*y)/ys);
        // scale to avg color
        if (c) p[y][x].dd=(p[y][x].dd*cavg)/c;
        }
    // compute min max intensities
    for (c0=0,c1=0,y=0;y<ys;y++)
     for (x=0;x<xs;x++)
        {
        c=p[y][x].dd;
        if (c0>c) c0=c;
        if (c1<c) c1=c;
        }
    // maximize dynamic range <0,765>
    for (y=0;y<ys;y++)
     for (x=0;x<xs;x++)
      c=((p[y][x].dd-c0)*765)/(c1-c0);
    return cavg;
    }
//---------------------------------------------------------------------------
void picture::rgb_smooth()
    {
    color   *q0,*q1;
    int     x,y,i;
    color   c0,c1,c2;
    if ((xs<2)||(ys<2)) return;
    for (y=0;y<ys-1;y++)
        {
        q0=p[y  ];
        q1=p[y+1];
        for (x=0;x<xs-1;x++)
            {
            c0=q0[x];
            c1=q0[x+1];
            c2=q1[x];
            for (i=0;i<4;i++) q0[x].db[i]=WORD((WORD(c0.db[i])+WORD(c0.db[i])+WORD(c1.db[i])+WORD(c2.db[i]))>>2);
            }
        }
    }
//---------------------------------------------------------------------------

I use my own picture class for images so some members are:

  • xs,ys size of image in pixels
  • p[y][x].dd is pixel at (x,y) position as 32 bit integer type
  • clear(color) – clears entire image
  • resize(xs,ys) – resizes image to new resolution
  • bmp – VCL encapsulated GDI Bitmap with Canvas access

I added source just for 2 relevant member functions (no need to copy whole class here)

[edit3] LQ image

The best setting I found (code is the same):

int sz=32;          // [pixels] square size for corner avg color computation (c00..c11)
int fs0=2;          // blue [pixels] font thickness
int fs1=2;          // red  [pixels] font thickness
int tr0=52;         // blue min treshold
int tr1=0;          // red  max treshold

LQ example

Due to lighting conditions the red area is unusable (turned off)

Leave a Comment