CMake and finding other projects and their dependencies

Easy. Here is the example from the top of my head:

The top level CMakeLists.txt:

cmake_minimum_required(VERSION 2.8.10)

# You can tweak some common (for all subprojects) stuff here. For example:

set(CMAKE_DISABLE_IN_SOURCE_BUILD ON)
set(CMAKE_DISABLE_SOURCE_CHANGES  ON)

if ("${CMAKE_SOURCE_DIR}" STREQUAL "${CMAKE_BINARY_DIR}")
  message(SEND_ERROR "In-source builds are not allowed.")
endif ()

set(CMAKE_VERBOSE_MAKEFILE ON)
set(CMAKE_COLOR_MAKEFILE   ON)

# Remove 'lib' prefix for shared libraries on Windows
if (WIN32)
  set(CMAKE_SHARED_LIBRARY_PREFIX "")
endif ()

# When done tweaking common stuff, configure the components (subprojects).
# NOTE: The order matters! The most independent ones should go first.
add_subdirectory(components/B) # B is a static library (depends on Boost)
add_subdirectory(components/C) # C is a shared library (depends on B and external XXX)
add_subdirectory(components/A) # A is a shared library (depends on C and B)

add_subdirectory(components/Executable) # Executable (depends on A and C)

CMakeLists.txt in components/B:

cmake_minimum_required(VERSION 2.8.10)

project(B C CXX)

find_package(Boost
             1.50.0
             REQUIRED)

file(GLOB CPP_FILES source/*.cpp)

include_directories(${Boost_INCLUDE_DIRS})

add_library(${PROJECT_NAME} STATIC ${CPP_FILES})

# Required on Unix OS family to be able to be linked into shared libraries.
set_target_properties(${PROJECT_NAME}
                      PROPERTIES POSITION_INDEPENDENT_CODE ON)

target_link_libraries(${PROJECT_NAME})

# Expose B's public includes (including Boost transitively) to other
# subprojects through cache variable.
set(${PROJECT_NAME}_INCLUDE_DIRS ${PROJECT_SOURCE_DIR}/include
                                 ${Boost_INCLUDE_DIRS}
    CACHE INTERNAL "${PROJECT_NAME}: Include Directories" FORCE)

CMakeLists.txt in components/C:

cmake_minimum_required(VERSION 2.8.10)

project(C C CXX)

find_package(XXX REQUIRED)

file(GLOB CPP_FILES source/*.cpp)

add_definitions(${XXX_DEFINITIONS})

# NOTE: Boost's includes are transitively added through B_INCLUDE_DIRS.
include_directories(${B_INCLUDE_DIRS}
                    ${XXX_INCLUDE_DIRS})

add_library(${PROJECT_NAME} SHARED ${CPP_FILES})

target_link_libraries(${PROJECT_NAME} B
                                      ${XXX_LIBRARIES})

# Expose C's definitions (in this case only the ones of XXX transitively)
# to other subprojects through cache variable.
set(${PROJECT_NAME}_DEFINITIONS ${XXX_DEFINITIONS}
    CACHE INTERNAL "${PROJECT_NAME}: Definitions" FORCE)

# Expose C's public includes (including the ones of C's dependencies transitively)
# to other subprojects through cache variable.
set(${PROJECT_NAME}_INCLUDE_DIRS ${PROJECT_SOURCE_DIR}/include
                                 ${B_INCLUDE_DIRS}
                                 ${XXX_INCLUDE_DIRS}
    CACHE INTERNAL "${PROJECT_NAME}: Include Directories" FORCE)

CMakeLists.txt in components/A:

cmake_minimum_required(VERSION 2.8.10)

project(A C CXX)

file(GLOB CPP_FILES source/*.cpp)

# XXX's definitions are transitively added through C_DEFINITIONS.
add_definitions(${C_DEFINITIONS})

# NOTE: B's and Boost's includes are transitively added through C_INCLUDE_DIRS.
include_directories(${C_INCLUDE_DIRS})

add_library(${PROJECT_NAME} SHARED ${CPP_FILES})

# You could need `${XXX_LIBRARIES}` here too, in case if the dependency 
# of A on C is not purely transitive in terms of XXX, but A explicitly requires
# some additional symbols from XXX. However, in this example, I assumed that 
# this is not the case, therefore A is only linked against B and C.
target_link_libraries(${PROJECT_NAME} B
                                      C)

# Expose A's definitions (in this case only the ones of C transitively)
# to other subprojects through cache variable.
set(${PROJECT_NAME}_DEFINITIONS ${C_DEFINITIONS}
    CACHE INTERNAL "${PROJECT_NAME}: Definitions" FORCE)

# Expose A's public includes (including the ones of A's dependencies
# transitively) to other subprojects through cache variable.
set(${PROJECT_NAME}_INCLUDE_DIRS ${PROJECT_SOURCE_DIR}/include
                                 ${C_INCLUDE_DIRS}
    CACHE INTERNAL "${PROJECT_NAME}: Include Directories" FORCE)

CMakeLists.txt in components/Executable:

cmake_minimum_required(VERSION 2.8.10)

project(Executable C CXX)

file(GLOB CPP_FILES source/*.cpp)

add_definitions(${A_DEFINITIONS})

include_directories(${A_INCLUDE_DIRS})

add_executable(${PROJECT_NAME} ${CPP_FILES})

target_link_libraries(${PROJECT_NAME} A C)

To make it clear, here is the corresponding source tree structure:

Root of the project
├───components
│   ├───Executable
│   │   ├───resource
│   │   │   └───icons
│   │   ├───source
|   |   └───CMakeLists.txt
│   ├───A
│   │   ├───include
│   │   │   └───A
│   │   ├───source
|   |   └───CMakeLists.txt
│   ├───B
│   │   ├───include
│   │   │   └───B
│   │   ├───source
|   |   └───CMakeLists.txt
│   └───C
│       ├───include
│       │   └───C
│       ├───source
|       └───CMakeLists.txt
└───CMakeLists.txt

There are many points where this could be tweaked/customized or changed to satisfy certain needs, but this should at least get you started.

NOTE: I’ve successfully employed this structure in several medium-sized and large projects.

Leave a Comment