Compare arrays in swift

You’re right to be slightly nervous about ==:

struct NeverEqual: Equatable { }
func ==(lhs: NeverEqual, rhs: NeverEqual)->Bool { return false }
let x = [NeverEqual()]
var y = x
x == y  // this returns true

[NeverEqual()] == [NeverEqual()] // false
x == [NeverEqual()] // false

let z = [NeverEqual()]
x == z // false

x == y // true

y[0] = NeverEqual()
x == y // now false

Why? Swift arrays do not conform to Equatable, but they do have an == operator, defined in the standard library as:

func ==<T : Equatable>(lhs: [T], rhs: [T]) -> Bool

This operator loops over the elements in lhs and rhs, comparing the values at each position. It does not do a bitwise compare – it calls the == operator on each pair of elements. That means if you write a custom == for your element, it’ll get called.

But it contains an optimization – if the underlying buffers for the two arrays are the same, it doesn’t bother, it just returns true (they contain identical elements, of course they’re equal!).

This issue is entirely the fault of the NeverEqual equality operator. Equality should be transitive, symmetric and reflexive, and this one isn’t reflexive (x == x is false). But it could still catch you unawares.

Swift arrays are copy-on-write – so when you write var x = y it doesn’t actually make a copy of the array, it just points x’s storage buffer pointer at y’s. Only if x or y are mutated later does it then make a copy of the buffer, so that the unchanged variable is unaffected. This is critical for arrays to behave like value types but still be performant.

In early versions of Swift, you actually could call === on arrays (also in early versions, the mutating behaviour was a bit different, if you mutated x, y would also change even though it had been declared with let – which freaked people out so they changed it).

You can kinda reproduce the old behaviour of === on arrays with this (very implementation-dependent not to be relied-on except for poking and prodding investigations) trick:

let a = [1,2,3]
var b = a

a.withUnsafeBufferPointer { outer in 
    b.withUnsafeBufferPointer { inner in 
        println(inner.baseAddress == outer.baseAddress) 
    } 
}

Leave a Comment