How to find cube root using Python? [duplicate]

You could use x ** (1. / 3) to compute the (floating-point) cube root of x.

The slight subtlety here is that this works differently for negative numbers in Python 2 and 3. The following code, however, handles that:

def is_perfect_cube(x):
    x = abs(x)
    return int(round(x ** (1. / 3))) ** 3 == x

print(is_perfect_cube(63))
print(is_perfect_cube(64))
print(is_perfect_cube(65))
print(is_perfect_cube(-63))
print(is_perfect_cube(-64))
print(is_perfect_cube(-65))
print(is_perfect_cube(2146689000)) # no other currently posted solution
                                   # handles this correctly

This takes the cube root of x, rounds it to the nearest integer, raises to the third power, and finally checks whether the result equals x.

The reason to take the absolute value is to make the code work correctly for negative numbers across Python versions (Python 2 and 3 treat raising negative numbers to fractional powers differently).

Leave a Comment