How to generalize fast matrix multiplication on GPU using numba

There are arguably at least two errors in that posted code:

  1. This can’t possibly be a correct range check:

    if x >= C.shape[0] and y >= C.shape[1]:
    

    In order for us to decide that a particular thread in the grid not do any loading activity, we require either that x is out of range or that y is out of range. The and should have been an or.

  2. It is illegal to use cuda.syncthreads() in conditional code, if all the threads in the block cannot participate in that statement. The previous return statement in item 1 above (even if corrected from and to or) pretty much guarantees this illegal behavior for problem sizes not whole-number-divisible by the threadblock size.

Therefore, to fix these issues, we cannot use just a simple return statement for an out-of-bounds thread. Instead, at the point of load, we must only allow threads to load from global to shared memory, if the computed global load indices (for A or B) are in-bounds (the shared indices are in-bounds, by definition). Furthermore, when writing a result, we must only write computed results that are in-bounds for C.

The following code has those items fixed. It seems to work correctly for your given test case:

$ cat t49.py
from numba import cuda, float32
import numpy as np
import math

@cuda.jit
def fast_matmul(A, B, C):
    # Define an array in the shared memory
    # The size and type of the arrays must be known at compile time
    sA = cuda.shared.array(shape=(TPB, TPB), dtype=float32)
    sB = cuda.shared.array(shape=(TPB, TPB), dtype=float32)

    x, y = cuda.grid(2)

    tx = cuda.threadIdx.x
    ty = cuda.threadIdx.y
    bpg = cuda.gridDim.x    # blocks per grid

    # Each thread computes one element in the result matrix.
    # The dot product is chunked into dot products of TPB-long vectors.
    tmp = float32(0.)
    for i in range(bpg):
        # Preload data into shared memory
        sA[tx, ty] = 0
        sB[tx, ty] = 0
        if x < A.shape[0] and (ty+i*TPB) < A.shape[1]:
          sA[tx, ty] = A[x, ty + i * TPB]
        if y < B.shape[1] and (tx+i*TPB) < B.shape[0]:
          sB[tx, ty] = B[tx + i * TPB, y]

        # Wait until all threads finish preloading
        cuda.syncthreads()

        # Computes partial product on the shared memory
        for j in range(TPB):
            tmp += sA[tx, j] * sB[j, ty]

        # Wait until all threads finish computing
        cuda.syncthreads()
    if x < C.shape[0] and y < C.shape[1]:
        C[x, y] = tmp



#%%

x_h = np.arange(16).reshape([4,4])
y_h = np.ones([4,4])
z_h = np.zeros([4,4])

x_d = cuda.to_device(x_h)
y_d = cuda.to_device(y_h)
z_d = cuda.to_device(z_h)

TPB = 3
threadsperblock = (TPB, TPB)
blockspergrid_x = math.ceil(z_h.shape[0] / threadsperblock[0])
blockspergrid_y = math.ceil(z_h.shape[1] / threadsperblock[1])
blockspergrid = (blockspergrid_x, blockspergrid_y)

fast_matmul[blockspergrid, threadsperblock](x_d, y_d, z_d)
z_h = z_d.copy_to_host()
print(z_h)
print(x_h@y_h)
$ cuda-memcheck python t49.py
========= CUDA-MEMCHECK
[[ 6.  6.  6.  6.]
 [22. 22. 22. 22.]
 [38. 38. 38. 38.]
 [54. 54. 54. 54.]]
[[ 6.  6.  6.  6.]
 [22. 22. 22. 22.]
 [38. 38. 38. 38.]
 [54. 54. 54. 54.]]
========= ERROR SUMMARY: 0 errors
$

(Note the use of and here in the bounds tests is correct. Testing whether a set of indices are in-bound is different in a boolean sense compared to testing whether a set of indices is out-of-bounds. In the in-bounds test, we require both to be in-bounds. In the out-of-bounds test, either index out-of-bounds is disqualifying).

I’m not suggesting the above code is defect-free or suitable for any particular purpose. It is offered to demonstrate possible fixes for the issues I identified. Getting a shared-memory tiled matrix multiply to work in every imaginable configuration is non-trivial, as you have discovered, and I’ve not tested it beyond what is shown here. (For example, if you decided to make TPB larger than 32, you would run into other problems. Also, the original posted code is advertised only for square matrix multiplication, and this will not work in the general non-square case.)

As noted above, the posted code and the above code with “fixes” will not correctly handle the general non-square case. I believe some straightforward modifications will allow us to handle the non-square case. In a nutshell, we must size the grid large enough to handle the dimensions of both input matrices, while still only writing results for the in-bounds values of the output matrix. Here is a lightly tested example:

$ cat t49.py
from numba import cuda, float32
import numpy as np
import math

@cuda.jit
def fast_matmul(A, B, C):
    # Define an array in the shared memory
    # The size and type of the arrays must be known at compile time
    sA = cuda.shared.array(shape=(TPB, TPB), dtype=float32)
    sB = cuda.shared.array(shape=(TPB, TPB), dtype=float32)

    x, y = cuda.grid(2)

    tx = cuda.threadIdx.x
    ty = cuda.threadIdx.y
    bpg = cuda.gridDim.x    # blocks per grid

    # Each thread computes one element in the result matrix.
    # The dot product is chunked into dot products of TPB-long vectors.
    tmp = float32(0.)
    for i in range(bpg):
        # Preload data into shared memory
        sA[ty, tx] = 0
        sB[ty, tx] = 0
        if y < A.shape[0] and (tx+i*TPB) < A.shape[1]:
          sA[ty, tx] = A[y, tx + i * TPB]
        if x < B.shape[1] and (ty+i*TPB) < B.shape[0]:
          sB[ty, tx] = B[ty + i * TPB, x]

        # Wait until all threads finish preloading
        cuda.syncthreads()

        # Computes partial product on the shared memory
        for j in range(TPB):
            tmp += sA[ty, j] * sB[j, tx]

        # Wait until all threads finish computing
        cuda.syncthreads()
    if y < C.shape[0] and x < C.shape[1]:
        C[y, x] = tmp



#%%

x_h = np.arange(115).reshape([5,23])
y_h = np.ones([23,7])
z_h = np.zeros([5,7])

x_d = cuda.to_device(x_h)
y_d = cuda.to_device(y_h)
z_d = cuda.to_device(z_h)

#TPB must be an integer between 1 and 32
TPB = 32
threadsperblock = (TPB, TPB)
grid_y_max = max(x_h.shape[0],y_h.shape[0])
grid_x_max = max(x_h.shape[1],y_h.shape[1])
blockspergrid_x = math.ceil(grid_x_max / threadsperblock[0])
blockspergrid_y = math.ceil(grid_y_max / threadsperblock[1])
blockspergrid = (blockspergrid_x, blockspergrid_y)

fast_matmul[blockspergrid, threadsperblock](x_d, y_d, z_d)
z_h = z_d.copy_to_host()
print(z_h)
print(x_h@y_h)
$ cuda-memcheck python t49.py
========= CUDA-MEMCHECK
[[ 253.  253.  253.  253.  253.  253.  253.]
 [ 782.  782.  782.  782.  782.  782.  782.]
 [1311. 1311. 1311. 1311. 1311. 1311. 1311.]
 [1840. 1840. 1840. 1840. 1840. 1840. 1840.]
 [2369. 2369. 2369. 2369. 2369. 2369. 2369.]]
[[ 253.  253.  253.  253.  253.  253.  253.]
 [ 782.  782.  782.  782.  782.  782.  782.]
 [1311. 1311. 1311. 1311. 1311. 1311. 1311.]
 [1840. 1840. 1840. 1840. 1840. 1840. 1840.]
 [2369. 2369. 2369. 2369. 2369. 2369. 2369.]]
========= ERROR SUMMARY: 0 errors
$

I’ve also reordered the sense of x and y (and usage of tx and ty) to fix a performance issue in the above code. The same performance issue was present in the original posted doc code as well.

Again, no claims of defect free. Furthermore I’m sure “more optimal” code could be arrived at. However optimizing matrix multiplication is an exercise that should fairly quickly lead to using a library implementation. Using cupy here for the GPU approach should be a fairly straightforward way to tap into a high-quality matrix multiply routine on the GPU.

EDIT: As discussed here OP’s code (and, it seems, the doc example) also had a performance issue around the setup of the tmp variable. Changing that to a proper 32-bit float variable makes an important performance difference.

Leave a Comment