Java Lambda Stream Distinct() on arbitrary key? [duplicate]

The distinct operation is a stateful pipeline operation; in this case it’s a stateful filter. It’s a bit inconvenient to create these yourself, as there’s nothing built-in, but a small helper class should do the trick:

/**
 * Stateful filter. T is type of stream element, K is type of extracted key.
 */
static class DistinctByKey<T,K> {
    Map<K,Boolean> seen = new ConcurrentHashMap<>();
    Function<T,K> keyExtractor;
    public DistinctByKey(Function<T,K> ke) {
        this.keyExtractor = ke;
    }
    public boolean filter(T t) {
        return seen.putIfAbsent(keyExtractor.apply(t), Boolean.TRUE) == null;
    }
}

I don’t know your domain classes, but I think that, with this helper class, you could do what you want like this:

BigDecimal totalShare = orders.stream()
    .filter(new DistinctByKey<Order,CompanyId>(o -> o.getCompany().getId())::filter)
    .map(Order::getShare)
    .reduce(BigDecimal.ZERO, BigDecimal::add);

Unfortunately the type inference couldn’t get far enough inside the expression, so I had to specify explicitly the type arguments for the DistinctByKey class.

This involves more setup than the collectors approach described by Louis Wasserman, but this has the advantage that distinct items pass through immediately instead of being buffered up until the collection completes. Space should be the same, as (unavoidably) both approaches end up accumulating all distinct keys extracted from the stream elements.

UPDATE

It’s possible to get rid of the K type parameter since it’s not actually used for anything other than being stored in a map. So Object is sufficient.

/**
 * Stateful filter. T is type of stream element.
 */
static class DistinctByKey<T> {
    Map<Object,Boolean> seen = new ConcurrentHashMap<>();
    Function<T,Object> keyExtractor;
    public DistinctByKey(Function<T,Object> ke) {
        this.keyExtractor = ke;
    }
    public boolean filter(T t) {
        return seen.putIfAbsent(keyExtractor.apply(t), Boolean.TRUE) == null;
    }
}

BigDecimal totalShare = orders.stream()
    .filter(new DistinctByKey<Order>(o -> o.getCompany().getId())::filter)
    .map(Order::getShare)
    .reduce(BigDecimal.ZERO, BigDecimal::add);

This simplifies things a bit, but I still had to specify the type argument to the constructor. Trying to use diamond or a static factory method doesn’t seem to improve things. I think the difficulty is that the compiler can’t infer generic type parameters — for a constructor or a static method call — when either is in the instance expression of a method reference. Oh well.

(Another variation on this that would probably simplify it is to make DistinctByKey<T> implements Predicate<T> and rename the method to eval. This would remove the need to use a method reference and would probably improve type inference. However, it’s unlikely to be as nice as the solution below.)

UPDATE 2

Can’t stop thinking about this. Instead of a helper class, use a higher-order function. We can use captured locals to maintain state, so we don’t even need a separate class! Bonus, things are simplified so type inference works!

public static <T> Predicate<T> distinctByKey(Function<? super T,Object> keyExtractor) {
    Map<Object,Boolean> seen = new ConcurrentHashMap<>();
    return t -> seen.putIfAbsent(keyExtractor.apply(t), Boolean.TRUE) == null;
}

BigDecimal totalShare = orders.stream()
    .filter(distinctByKey(o -> o.getCompany().getId()))
    .map(Order::getShare)
    .reduce(BigDecimal.ZERO, BigDecimal::add);

Leave a Comment