What’s a use case for overloading member functions on reference qualifiers?

In a class that provides reference-getters, ref-qualifier overloading can activate move semantics when extracting from an rvalue. E.g.:

class some_class {
  huge_heavy_class hhc;
public:
  huge_heavy_class& get() & {
    return hhc;
  }
  huge_heavy_class const& get() const& {
    return hhc;
  }
  huge_heavy_class&& get() && {
    return std::move(hhc);
  }
};

some_class factory();
auto hhc = factory().get();

This does seem like a lot of effort to invest only to have the shorter syntax

auto hhc = factory().get();

have the same effect as

auto hhc = std::move(factory().get());

EDIT: I found the original proposal paper, it provides three motivating examples:

  1. Constraining operator = to lvalues (TemplateRex’s answer)
  2. Enabling move for members (basically this answer)
  3. Constraining operator & to lvalues. I suppose this is sensible to ensure that the “pointee” is more likely to be alive when the “pointer” is eventually dereferenced:
struct S {
  T operator &() &;
};

int main() {
  S foo;
  auto p1 = &foo;  // Ok
  auto p2 = &S();  // Error
}

Can’t say I’ve ever personally used an operator& overload.

Leave a Comment