Why the libc++ std::vector internally keeps three pointers instead of one pointer and two sizes?

It’s because the rationale is that performance should be optimized for iterators, not indices.
(In other words, performance should be optimized for begin()/end(), not size()/operator[].)
Why? Because iterators are generalized pointers, and thus C++ encourages their use, and in return ensures that their performance matches those of raw pointers when the two are equivalent.

To see why it’s a performance issue, notice that the typical for loop is as follows:

for (It i = items.begin(); i != items.end(); ++i)
    ...

Except in the most trivial cases, if we kept track of sizes instead of pointers, what would happen is that the comparison i != items.end() would turn into i != items.begin() + items.size(), taking more instructions than you’d expect. (The optimizer generally has a hard time factoring out the code in many cases.) This slows things down dramatically in a tight loop, and hence this design is avoided.

(I’ve verified this is a performance problem when trying to write my own replacement for std::vector.)


Edit: As Yakk pointed out in the comments, using indices instead of pointers can also result in the generation of a multiplication instruction when the element sizes aren’t powers of 2, which is pretty expensive and noticeable in a tight loop. I didn’t think of this when writing this answer, but it’s a phenomenon that’s bitten me before (e.g. see here)… bottom line is, in a tight loop everything matters.

Leave a Comment