Creating a Math library using Generics in C#

Here is a way to abstract out the operators that is relatively painless.

    abstract class MathProvider<T>
    {
        public abstract T Divide(T a, T b);
        public abstract T Multiply(T a, T b);
        public abstract T Add(T a, T b);
        public abstract T Negate(T a);
        public virtual T Subtract(T a, T b)
        {
            return Add(a, Negate(b));
        }
    }

    class DoubleMathProvider : MathProvider<double>
    {
        public override double Divide(double a, double b)
        {
            return a / b;
        }

        public override double Multiply(double a, double b)
        {
            return a * b;
        }

        public override double Add(double a, double b)
        {
            return a + b;
        }

        public override double Negate(double a)
        {
            return -a;
        }
    }

    class IntMathProvider : MathProvider<int>
    {
        public override int Divide(int a, int b)
        {
            return a / b;
        }

        public override int Multiply(int a, int b)
        {
            return a * b;
        }

        public override int Add(int a, int b)
        {
            return a + b;
        }

        public override int Negate(int a)
        {
            return -a;
        }
    }

    class Fraction<T>
    {
        static MathProvider<T> _math;
        // Notice this is a type constructor.  It gets run the first time a
        // variable of a specific type is declared for use.
        // Having _math static reduces overhead.
        static Fraction()
        {
            // This part of the code might be cleaner by once
            // using reflection and finding all the implementors of
            // MathProvider and assigning the instance by the one that
            // matches T.
            if (typeof(T) == typeof(double))
                _math = new DoubleMathProvider() as MathProvider<T>;
            else if (typeof(T) == typeof(int))
                _math = new IntMathProvider() as MathProvider<T>;
            // ... assign other options here.

            if (_math == null)
                throw new InvalidOperationException(
                    "Type " + typeof(T).ToString() + " is not supported by Fraction.");
        }

        // Immutable impementations are better.
        public T Numerator { get; private set; }
        public T Denominator { get; private set; }

        public Fraction(T numerator, T denominator)
        {
            // We would want this to be reduced to simpilest terms.
            // For that we would need GCD, abs, and remainder operations
            // defined for each math provider.
            Numerator = numerator;
            Denominator = denominator;
        }

        public static Fraction<T> operator +(Fraction<T> a, Fraction<T> b)
        {
            return new Fraction<T>(
                _math.Add(
                  _math.Multiply(a.Numerator, b.Denominator),
                  _math.Multiply(b.Numerator, a.Denominator)),
                _math.Multiply(a.Denominator, b.Denominator));
        }

        public static Fraction<T> operator -(Fraction<T> a, Fraction<T> b)
        {
            return new Fraction<T>(
                _math.Subtract(
                  _math.Multiply(a.Numerator, b.Denominator),
                  _math.Multiply(b.Numerator, a.Denominator)),
                _math.Multiply(a.Denominator, b.Denominator));
        }

        public static Fraction<T> operator /(Fraction<T> a, Fraction<T> b)
        {
            return new Fraction<T>(
                _math.Multiply(a.Numerator, b.Denominator),
                _math.Multiply(a.Denominator, b.Numerator));
        }

        // ... other operators would follow.
    }

If you fail to implement a type that you use, you will get a failure at runtime instead of at compile time (that is bad). The definition of the MathProvider<T> implementations is always going to be the same (also bad). I would suggest that you just avoid doing this in C# and use F# or some other language better suited to this level of abstraction.

Edit: Fixed definitions of add and subtract for Fraction<T>.
Another interesting and simple thing to do is implement a MathProvider that operates on an abstract syntax tree. This idea immediately points to doing things like automatic differentiation: http://conal.net/papers/beautiful-differentiation/

Leave a Comment