Python built-in sum function vs. for loop performance

The speed difference is actually greater than 3 times, but you slow down either version by first creating a huge in-memory list of 1 million integers. Separate that out of the time trials:

>>> import timeit
>>> def sum1(lst):
...     s = 0
...     for i in lst:
...         s += i
...     return s
... 
>>> def sum2(lst):
...     return sum(lst)
... 
>>> values = range(1000000)
>>> timeit.timeit('f(lst)', 'from __main__ import sum1 as f, values as lst', number=100)
3.457869052886963
>>> timeit.timeit('f(lst)', 'from __main__ import sum2 as f, values as lst', number=100)
0.6696369647979736

The speed difference has risen to over 5 times now.

A for loop is executed as interpreted Python bytecode. sum() loops entirely in C code. The speed difference between interpreted bytecode and C code is large.

In addition, the C code makes sure not to create new Python objects if it can keep the sum in C types instead; this works for int and float results.

The Python version, disassembled, does this:

>>> import dis
>>> def sum1():
...     s = 0
...     for i in range(1000000):
...         s += i
...     return s
... 
>>> dis.dis(sum1)
  2           0 LOAD_CONST               1 (0)
              3 STORE_FAST               0 (s)

  3           6 SETUP_LOOP              30 (to 39)
              9 LOAD_GLOBAL              0 (range)
             12 LOAD_CONST               2 (1000000)
             15 CALL_FUNCTION            1
             18 GET_ITER            
        >>   19 FOR_ITER                16 (to 38)
             22 STORE_FAST               1 (i)

  4          25 LOAD_FAST                0 (s)
             28 LOAD_FAST                1 (i)
             31 INPLACE_ADD         
             32 STORE_FAST               0 (s)
             35 JUMP_ABSOLUTE           19
        >>   38 POP_BLOCK           

  5     >>   39 LOAD_FAST                0 (s)
             42 RETURN_VALUE        

Apart from the interpreter loop being slower than C, the INPLACE_ADD will create a new integer object (past 255, CPython caches small int objects as singletons).

You can see the C implementation in the Python mercurial code repository, but it explicitly states in the comments:

/* Fast addition by keeping temporary sums in C instead of new Python objects.
   Assumes all inputs are the same type.  If the assumption fails, default
   to the more general routine.
*/

Leave a Comment