Passing numpy arrays in Cython to a C function that requires dynamically allocated arrays

Create a helper array in cython

To get a double** from a numpy array, you can create a helper-array of pointers in your *.pyx file. Further more, you have to make sure that the numpy array has the correct memory layout. (It might involve creating a copy)

Fortran order

If your C-function expects fortran order (all x-coordinates in one list, all y coordinates in another list, all z-coordinates in a third list, if your array a corresponds to a list of points in 3D space)

N,M = a.shape
# Make sure the array a has the correct memory layout (here F-order)
cdef np.ndarray[double, ndim=2, mode="fortran"] a_cython =
                         np.asarray(a, dtype = float, order="F")
#Create our helper array
cdef double** point_to_a = <double **>malloc(M * sizeof(double*))
if not point_to_a: raise MemoryError
try:
    #Fillup the array with pointers
    for i in range(M): 
        point_to_a[i] = &a_cython[0, i]
    # Call the C function that expects a double**
    myfunc(... &point_to_a[0], ...)
finally:
    free(point_to_a)

C-order

If your C-function expects C-order ([x1,y1,z1] is the first list, [x2,y2,z2] the second list for a list of 3D points):

N,M = a.shape
# Make sure the array a has the correct memory layout (here C-order)
cdef np.ndarray[double, ndim=2, mode="c"] a_cython =
                         np.asarray(a, dtype = float, order="C")
#Create our helper array
cdef double** point_to_a = <double **>malloc(N * sizeof(double*))
if not point_to_a: raise MemoryError
try:
    for i in range(N): 
        point_to_a[i] = &a_cython[i, 0]
    # Call the C function that expects a double**
    myfunc(... &point_to_a[0], ...)
finally:
    free(point_to_a)

Leave a Comment