Why do std::shared_ptr work

The trick is that std::shared_ptr performs type erasure. Basically, when a new shared_ptr is created it will store internally a deleter function (which can be given as argument to the constructor but if not present defaults to calling delete). When the shared_ptr is destroyed, it calls that stored function and that will call the deleter.

A simple sketch of the type erasure that is going on simplified with std::function, and avoiding all reference counting and other issues can be seen here:

template <typename T>
void delete_deleter( void * p ) {
   delete static_cast<T*>(p);
}

template <typename T>
class my_unique_ptr {
  std::function< void (void*) > deleter;
  T * p;
  template <typename U>
  my_unique_ptr( U * p, std::function< void(void*) > deleter = &delete_deleter<U> ) 
     : p(p), deleter(deleter) 
  {}
  ~my_unique_ptr() {
     deleter( p );   
  }
};

int main() {
   my_unique_ptr<void> p( new double ); // deleter == &delete_deleter<double>
}
// ~my_unique_ptr calls delete_deleter<double>(p)

When a shared_ptr is copied (or default constructed) from another the deleter is passed around, so that when you construct a shared_ptr<T> from a shared_ptr<U> the information on what destructor to call is also passed around in the deleter.

Leave a Comment