Is ‘switch’ faster than ‘if’?

There are several optimizations a compiler can make on a switch. I don’t think the oft-mentioned “jump-table” is a very useful one though, as it only works when the input can be bounded some way.

C Pseudocode for a “jump table” would be something like this — note that the compiler in practice would need to insert some form of if test around the table to ensure that the input was valid in the table. Note also that it only works in the specific case that the input is a run of consecutive numbers.

If the number of branches in a switch is extremely large, a compiler can do things like using binary search on the values of the switch, which (in my mind) would be a much more useful optimization, as it does significantly increase performance in some scenarios, is as general as a switch is, and does not result in greater generated code size. But to see that, your test code would need a LOT more branches to see any difference.

To answer your specific questions:

  1. Clang generates one that looks like this:

    test_switch(char):                       # @test_switch(char)
            movl    %edi, %eax
            cmpl    $19, %edi
            jbe     .LBB0_1
            retq
    .LBB0_1:
            jmpq    *.LJTI0_0(,%rax,8)
            jmp     void call<0u>()         # TAILCALL
            jmp     void call<1u>()         # TAILCALL
            jmp     void call<2u>()         # TAILCALL
            jmp     void call<3u>()         # TAILCALL
            jmp     void call<4u>()         # TAILCALL
            jmp     void call<5u>()         # TAILCALL
            jmp     void call<6u>()         # TAILCALL
            jmp     void call<7u>()         # TAILCALL
            jmp     void call<8u>()         # TAILCALL
            jmp     void call<9u>()         # TAILCALL
            jmp     void call<10u>()        # TAILCALL
            jmp     void call<11u>()        # TAILCALL
            jmp     void call<12u>()        # TAILCALL
            jmp     void call<13u>()        # TAILCALL
            jmp     void call<14u>()        # TAILCALL
            jmp     void call<15u>()        # TAILCALL
            jmp     void call<16u>()        # TAILCALL
            jmp     void call<17u>()        # TAILCALL
            jmp     void call<18u>()        # TAILCALL
            jmp     void call<19u>()        # TAILCALL
    .LJTI0_0:
            .quad   .LBB0_2
            .quad   .LBB0_3
            .quad   .LBB0_4
            .quad   .LBB0_5
            .quad   .LBB0_6
            .quad   .LBB0_7
            .quad   .LBB0_8
            .quad   .LBB0_9
            .quad   .LBB0_10
            .quad   .LBB0_11
            .quad   .LBB0_12
            .quad   .LBB0_13
            .quad   .LBB0_14
            .quad   .LBB0_15
            .quad   .LBB0_16
            .quad   .LBB0_17
            .quad   .LBB0_18
            .quad   .LBB0_19
            .quad   .LBB0_20
            .quad   .LBB0_21
    
  2. I can say that it is not using a jump table — 4 comparison instructions are clearly visible:

    13FE81C51 cmp  qword ptr [rsp+30h],1 
    13FE81C57 je   testSwitch+73h (13FE81C73h) 
    13FE81C59 cmp  qword ptr [rsp+30h],2 
    13FE81C5F je   testSwitch+87h (13FE81C87h) 
    13FE81C61 cmp  qword ptr [rsp+30h],3 
    13FE81C67 je   testSwitch+9Bh (13FE81C9Bh) 
    13FE81C69 cmp  qword ptr [rsp+30h],4 
    13FE81C6F je   testSwitch+0AFh (13FE81CAFh) 
    

    A jump table based solution does not use comparison at all.

  3. Either not enough branches to cause the compiler to generate a jump table, or your compiler simply doesn’t generate them. I’m not sure which.

EDIT 2014: There has been some discussion elsewhere from people familiar with the LLVM optimizer saying that the jump table optimization can be important in many scenarios; e.g. in cases where there is an enumeration with many values and many cases against values in said enumeration. That said, I stand by what I said above in 2011 — too often I see people thinking “if I make it a switch, it’ll be the same time no matter how many cases I have” — and that’s completely false. Even with a jump table you get the indirect jump cost and you pay for entries in the table for each case; and memory bandwidth is a Big Deal on modern hardware.

Write code for readability. Any compiler worth its salt is going to see an if / else if ladder and transform it into equivalent switch or vice versa if it would be faster to do so.

Leave a Comment